If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-10x=19
We move all terms to the left:
4x^2-10x-(19)=0
a = 4; b = -10; c = -19;
Δ = b2-4ac
Δ = -102-4·4·(-19)
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{101}}{2*4}=\frac{10-2\sqrt{101}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{101}}{2*4}=\frac{10+2\sqrt{101}}{8} $
| (6x+3)=(8x-2) | | 5c+5c+6c=16c | | -2d+3=3-d | | (6x-9)(9x+9)=0 | | 3x²+10x+5=7 | | 3(p-19)=-6 | | 2m^2+18m-21=0 | | -2u-16=-6(u+4) | | 3y-10=2y-20 | | 4x-17=-24 | | 3/2b+90(b+45)+b(2b-90)=540 | | 2a^2+2a-5=0 | | 6-k=-4 | | 2x^2+3x-5=9 | | 16t2+24t+9=0 | | 9+2x(6)=14+7x | | 3(5-9v)+14=-54 | | 35=–2x–15 | | -.55p-8=0.45p | | (x+5)^2+x^2=18^2 | | x-(-5/6)=0 | | 5y-10=75 | | .75x+5=0 | | 24n+8=72n+33 | | G-g+g=7 | | -1/4(2-x)+12x=44 | | X+18/6+x+9=x-3 | | y-8/7=7-4y/7 | | -3(3+x)+4(×-6)=-4 | | 2x^2+3x-5=4.5 | | 52=4x+8 | | 3a+3a+2=20 |